Учебные материалы


Воспроизводство жизни



Карта сайта Переход по ссылке Переход по ссылке Переход по ссылке Переход по ссылке

Загрузка...
Загрузка...
Загрузка...

1) оплодотворение(слияние половых клеток) при половом размножении;

2) воспроизводствов клетке по данной матрице определенных веществ и структур;

3) деление клеток,в результате которого организм растет из одной оплодотворенной яйцеклетки.

Существует два способа деления клеток. Митоз — это такое деление клеточного ядра, при котором образуются два дочерних ядра с наборами хромосом (части ядер клеток), идентичными наборам родительской клетки. Мейоз—это деление клеточного ядра с образованием четыре дочерних ядер, каждое из которых содержит вдвое меньше хромосом, чем исходное ядро. Первый способ характерен для всех клеток, кроме половых, второй — для половых клеток. При всех формах клеточного деления ДНК каждой хромосомы реплицируется.

Воспроизводство себе подобных и наследование признаков осуществляется с помощью наследственной информации, материальным носителем которой являются молекулы дезоксирибонуклеиновой кислоты. ДНК состоит из двух цепей, идущих в противоположных направлениях и закрученных одна вокруг другой наподобие электрических проводов. Напоминает винтовую лестницу.

В клетке человека ДНК распределена на 23 пары хромосом и содержит около 1 млрд. пар оснований, длина ее около 1 м. Если составить цепочку из ДНК всех клеток одного человека, то она сможет протянуться через всю Солнечную систему.

Носители информации — нуклеиновые кислоты — содержат азот и выполняют три функции: 1) самовоспроизведение; 2) хранение информации; 3) реализация этой информации в процессе роста новых клеток. Мономеры нуклеиновых кислот несут информацию, по которой строятся аминокислоты (каждой аминокислоте, входящей в белок, соответствует определенный набор из трех мономеров НК — так называемый триплет). Генетическая информация, содержащаяся в нуклеиновых кислотах, проявляется в образовании ферментов которые делают возможным строение живого тела.

Реализация многообразной информации о свойствах организма осуществляется путем синтеза различных белков согласно генетическому коду. Сходство и различие тел определяется набором белков. Чем ближе организмы друг к другу, тем более сходны их белки.

Молекулы ДНК—это как бы набор, с которого «печатается» организм в типографии Вселенной. Участок молекулы ДНК, служащий матрицей для синтеза одного белка, называют геном (знаменитая гипотеза «один ген — один фермент»). Гены расположены в хромосомах·

Процесс воспроизводства состоит из трех частей, называющихсятремя ключевыми словами: репликация, транскрипция, трансляция. Репликация — это удвоение молекулы ДНК, необходимое для последующего деления клеток. В основе способности клеток к самовоспроизведению лежат уникальное свойство ДНК самокопироваться и строго равноценное деление репродуцированных хромосом. После этого клетка может делиться на две идентичные.

Как происходит репликация? ДНК распределяется на две цепи, в затем из нуклеотидов, свободно плавающих в клетке, формируется вдоль каждой цепи еще одна цепь. Этот процесс можно сравнить с печатанием фотокарточек. Так как каждая клетка многоклеточного организма возникает из одной зародышевой клетки в результате многократных делений, все клетки организма имеют одинаковый набор генов.

Репликация ДНК — ключевое событие в ходе деления клетки. Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК. Репликация проходит в три этапа:

Регуляция репликации осуществляется в основном на этапе инициацииРепликация может начинаться не с любого участка ДНК, а со строго определённого, называемого сайтом инициации репликации. В геноме таких сайтов может быть как всего один, так и много. С понятием сайта инициации репликации тесно связано понятие репликон. Репликон — это участок ДНК, который содержит сайт инициации репликации и реплицируется после начала синтеза ДНК с этого сайта. Молекулярные механизмы, которые контролируют количество актов инициации репликации в каждом сайте за один цикл деления клетки, называются контролем копийности. В бактериальных клетках помимо хромосомной ДНК часто содержатся плазмиды, которые представляют собой отдельные репликоны. У плазмид существуют свои механизмы контроля копийности: они могут обеспечивать синтез как всего одной копии плазмиды за клеточный цикл, так и тысяч копий[1].

Загрузка...

Репликация начинается в сайте инициации репликации с расплетания двойной спирали ДНК, при этом формируется репликационная вилка — место непосредственной репликации ДНК. В каждом сайте может формироваться одна или две репликационные вилки в зависимости от того, является ли репликация одно- или двунаправленной. Более распространена двунаправленная репликация. Через некоторое время после начала репликации в электронный микроскоп можно наблюдать репликационный глазок — участок хромосомы, где ДНК уже реплицирована, окружённый более протяжёнными участками нереплицированной ДНК[1].

В репликационной вилке ДНК копирует крупный белковый комплекс (реплисома), ключевым ферментом которого является ДНК-полимераза.

Вторая часть процесса воспроизводства — транскрипция — представляет собой перенос кода ДНК путем образования одноцепочечной молекулы информационной РНК на одной нити ДНК (информационная РНК — копия части молекулы ДНК, одного или группы рядом лежащих генов, несущих информацию о структуре белков, необходимых для выполнения одной функции).

Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой. Процесс синтеза РНК протекает в направлении от 5'- к 3'- концу, то есть по матричной цепи ДНК РНК-полимераза движется в направлении 3'->5

РНК отличается от ДНК тем, что вместо дезоксирибозы содержит рибозу, а вместо азотистого основания тимина содержит урацил.

Для синтеза РНК используется одна, т. н. смысловая цепь из двуцепочечной молекулы ДНК. Матричный синтез РНК (т. е. синтез с использованием матрицы, шаблона, в данном случае – ДНК) осуществляет фермент РНК-полимераза. Этот фермент «узнаёт» на ДНК стартовый участок (участок начала транскрипции), присоединяется к нему, расплетает двойную цепь ДНК и начинает синтез одноцепочечной РНК. К смысловой цепи ДНК подходят нуклеотиды, присоединяются к ней по принципу соответствия (комплементарности), а затем передвигающийся по ДНК фермент сшивает их в полинуклеотидную цепь РНК.. Окончание транскрипции кодируется специальным участком ДНК. Подобно другим матричным процессам – репликации и трансляции, транскрипция включает три стадии – начало синтеза (инициация), наращивание цепи (элонгация) и окончание синтеза (терминация). После отделения от матрицы РНК поступает из клеточного ядра в цитоплазму. Информационная РНК (и-РНК), прежде чем присоединиться к рибосоме и в свою очередь стать матрицей для биосинтеза белка (трансляции), подвергается ряду преобразований. Таким образом происходит переписывание (лат. «транскрипцио» – переписывание) генетической информации, заключённой в последовательности нуклеотидов ДНК, в последовательность нуклеотидов и-РНК.

Третья часть процесса воспроизводства — трансляция — это, синтез белка на основе генетического кода информационной РНК в особых частях клетки — рибосомах, куда доставляет аминокислоты транспортная РНК.

ТРАНСЛЯЦИЯ, синтез белков (полипептидов) на рибосомах с использованием в качестве матрицы информационной рибонуклеиновой кислоты (и-РНК); завершающий этап реализации генетической информации в живых клетках. В ходе трансляции информация, записанная в нуклеиновых кислотах в виде генетического кода, переводится в последовательность аминокислот в синтезируемых белках.

Трансляция – очень сложный процесс В нём участвуют все виды рибонуклеиновых кислот, 20 видов аминокислот, многочисленные ферменты, белковые факторы, регулирующие начало (инициацию), продолжение (элонгацию) и окончание (терминацию) процесса. Главный организующий центр трансляции – клеточный органоид рибосома.

В сильно упрощённом виде трансляция включает следующие стадии. Синтезированная в клеточном ядре в ходе транскрипции молекула и-РНК поступает в цитоплазму, претерпевает ряд модификаций и соединяется с рибосомой. Находящиеся в цитоплазме аминокислоты активируются взаимодействием с богатым энергией соединением – АТФ. Поскольку аминокислоты и и-РНК в силу их химического строения «не соответствуют» друг другу (не могут взаимодействовать), между ними существует своего рода переходник – транспортные РНК (т-РНК). Активированные специальным ферментом аминокислоты с участием этого же фермента (для каждого вида аминокислоты – своего) соединяются т-РНК, также только со своей. Далее т-РНК, несущая аминокислоту, поступает на рибосому и своим антикодоном (тройкой нуклеотидов), узнав на и-РНК свой кодон (комплентарную тройку нуклеотидов), закрепляется на и-РНК на единственном свободном месте рядом со строящейся полипептидной цепью. Специальный фермент рибосомы образует пептидную связь между аминокислотой и синтезируемым полипептидом, а рибосома сдвигается по цепи и-РНК на один кодон, освобождая место для присоединения следующей т-РНК. Так происходит наращивание полипептидной цепи до тех пор, пока рибосома не дойдёт до «стоп-кодона». Получив сигнал окончания синтеза, белковые факторы терминации освобождают полипептидную цепь от рибосомы. Таким образом кодоны и-РНК определяют последовательность аминокислот в белке, а следовательно, его строение, свойства и активность.

Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

В ДНК используется четыре азотистых основания — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением нуклеотида, содержащего тимин, который заменён похожим нуклеотидом, содержащим урацил, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Генетический код

Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.

Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие



edu 2018 год. Все права принадлежат их авторам! Главная